These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of paclitaxel-inactivating CYP3A activity in human colorectal cancer: implications for drug therapy. Author: Martínez C, García-Martín E, Pizarro RM, García-Gamito FJ, Agúndez JA. Journal: Br J Cancer; 2002 Sep 09; 87(6):681-6. PubMed ID: 12237780. Abstract: Cytochrome P450 3A is a drug-metabolising enzyme activity due to CYP3A4 and CYP3A5 gene products, that is involved in the inactivation of anticancer drugs. This study analyses the potential of cytochrome P450 3A enzyme in human colorectal cancer to impact anticancer therapy with drugs that are cytochrome P450 3A substrates. Enzyme activity, variability and properties, and the ability to inactivate paclitaxel (taxol) were analysed in human colorectal cancer and healthy colorectal epithelium. Cytochrome P450 3A enzyme activity is present in healthy and tumoral samples, with a nearly 10-fold interindividual variability. Nifedipine oxidation activity+/-s.d. for colorectal cancer microsomes was 67.8+/-36.6 pmol min(-1) mg(-1). The K(m) of the tumoral enzyme (42+/-8 microM) is similar to that in healthy colorectal epithelium (36+/-8 microM) and the human liver enzyme. Colorectal cancer microsomes metabolised the anticancer drug paclitaxel with a mean activity was 3.1+/-1.2 pmol min(-1) mg(-1). The main metabolic pathway is carried out by cytochrome P450 3A, and it is inhibited by the cytochrome P450 3A-specific inhibitor ketoconazole with a K(I) value of 31 nM. This study demonstrates the occurrence of cytochrome P450 3A-dependent metabolism in colorectal cancer tissue. The metabolic activity confers to cancer cells the ability to inactivate cytochrome P450 3A substrates and may modulate tumour sensitivity to anticancer drugs.[Abstract] [Full Text] [Related] [New Search]