These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Validation of a bone analog model for studies of sternal closure. Author: Trumble DR, McGregor WE, Magovern JA. Journal: Ann Thorac Surg; 2002 Sep; 74(3):739-44; discussion 745. PubMed ID: 12238833. Abstract: BACKGROUND: The incidence of serious sternal wound complications may be reduced with improvements in closure methods. Biomechanical testing of median sternotomy closures in cadavers has proven useful but is limited by availability, high cost, and wide variations in the material properties of the sterna. This study tests whether artificial sterna can be used to replace whole cadavers in sternal closure testing. METHODS: Two common wire closure techniques were tested using both whole cadavers and artificial sternal models formed from bone analogue material. Sternal models were molded from polyurethane foam (20 lbs/ft3) to simulate the mechanical properties observed in human cadaveric sterna. The force vector previously identified as the most detrimental to sternal cohesion (lateral traction) was used to stress the closures. Separation of the incision site was measured at the manubrium, midsternum, and xiphoid and data were compared between cadaver and bench test groups. RESULTS: Sternal separations recorded in cadavers were found to be similar to bench test results for both closure types. Data variability within test groups was found to be consistently lower using artificial sterna, where peak standard deviations for sternal motion averaged less than half that measured in cadavers. CONCLUSIONS: Results suggest that anatomic sternal models formed from solid polyurethane foam can be used to approximate the biomechanical properties of cadaveric sterna and that reliable information regarding sternal closure stability can be secured through this means. Moreover, bench test data were shown to be less variable than cadaveric results, thus enhancing the power to detect small differences in sternal fixation stability.[Abstract] [Full Text] [Related] [New Search]