These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: L-type Ca2+ channel density and regulation are altered in failing human ventricular myocytes and recover after support with mechanical assist devices. Author: Chen X, Piacentino V, Furukawa S, Goldman B, Margulies KB, Houser SR. Journal: Circ Res; 2002 Sep 20; 91(6):517-24. PubMed ID: 12242270. Abstract: Ca2+ influx through the L-type calcium channel (LTCC) induces Ca2+ release from the sarcoplasmic reticulum (SR) and maintains SR Ca2+ loading. Alterations in LTCC properties, their contribution to the blunted adrenergic responsiveness in failing hearts and their recovery after support with LV assist devices (LVAD) were studied. L-type Ca2+ current (I(Ca,L)) was measured under basal conditions and in the presence of isoproterenol (ISO), dibutyryl-cAMP (db-cAMP), Bay K 8644 (BayK), Okadaic acid (OA, a phosphatase inhibitor), and phosphatase 2A (PP2A) in nonfailing (NF), failing (F), and LVAD-supported human left ventricular myocytes (HVMs). Basal I(Ca,L) density was not different in the 3 groups but I(Ca,L) was activated at more negative voltages in F- and LVAD- versus NF-HVMs (V(0.5): -7.18+/-1.4 and -7.0+/-0.9 versus 0.46+/-1.1 mV). Both ISO and db-cAMP increased I(Ca,L) in NF- and LVAD- significantly more than in F-HVMs (NF >LVAD> F: ISO: 90+/-15% versus 77+/-19% versus 24+/-12%; db-cAMP: 235%>172%>90%). ISO caused a significant leftward shift of the I(Ca,L) activation curve in NF- and LVAD- but not in F-HVMs. After ISO and db-cAMP, the I(Ca,L) activation was not significantly different between groups. BayK also increased I(Ca,L) more in NF- (81+/-30%) and LVAD- (70+/-15%) than in F- (51+/-8%) HVMs. OA increased I(Ca, L) by 85.6% in NF-HVMs but had no effect in F-HVMs, while PP2A decreased I(Ca, L) in F-HVMs by 35% but had no effect in NF-HVMs. These results suggest that the density of LTCC is reduced in F-HVMs but basal I(Ca,L) density is maintained by increasing in LTCC phosphorylation.[Abstract] [Full Text] [Related] [New Search]