These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dual isotope test for assessing beta-carotene cleavage to vitamin A in humans. Author: Hickenbottom SJ, Lemke SL, Dueker SR, Lin Y, Follett JR, Carkeet C, Buchholz BA, Vogel JS, Clifford AJ. Journal: Eur J Nutr; 2002 Aug; 41(4):141-7. PubMed ID: 12242581. Abstract: BACKGROUND: The ability of beta-carotene to deliver bioactive retinoids to tissues is highly variable. A clearer understanding of the environmental and genetic factors that modulate the vitamin A potential of beta-carotene is needed. AIM OF STUDY: Assess the vitamin A value of orally administered beta-carotene relative to a co-administered reference dose of preformed vitamin A. METHODS: Equimolar doses (30 micromol) of hexadeuterated D6 beta-carotene and D6 retinyl acetate were orally co-administered in an emulsified formulation to a male subject. The plasma concentration time courses of D6 retinol (derived from D6 retinyl acetate) and bioderived D3 retinol (from D(6) beta-carotene) were determined for 554 h postdosing using gas chromatography/mass spectrometry. Intact D6 beta-carotene plasma concentrations were determined by high-pressure liquid chromatography. The ratio of the two forms of vitamin A, D6 retinol/D3 retinol, at any single time point is postulated to reflect the quantity of vitamin A derived from beta-carotene relative to preformed vitamin A. Additionally, a minute amount of 14C beta-carotene (50 nCi; 0.27 microg) was included in the oral dose and cumulative 24-h stool and urine samples were collected for two weeks to follow absorption and excretion of the b-carotene. The 14C nuclide was detected using accelerator mass spectrometry (AMS). Results During the absorption/distribution phase (3-11 h) the D6/D3 ratio of the two retinols was not stable and ranged between a value of 3 and 16. Between 11 and 98 h postdosing the ratio was relatively stable with a mean value of 8.5 (95 % CI: 7.5, 8.7). These data suggest that in this subject and under these conditions, 8.5 moles of beta-carotene would provide a vitamin A quantity equivalent to 1 mole of preformed vitamin A. On a mass basis, 15.9 microg of beta-carotene was equivalent to 1 microg of retinol. The total administered beta-carotene was found to be 55 % absorbed by AMS analysis of cumulative stool. CONCLUSION: The co-administration of D6 beta-carotene and D6 retinyl acetate provides a technique for assessing individual ability to process beta-carotene to vitamin A. The results indicate that a single time point taken between 11-98 h after dose administration may provide a reliable value for the relative ratio of the two forms of vitamin A. However, results from more subjects are needed to assess the general utility of this method.[Abstract] [Full Text] [Related] [New Search]