These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The C-terminal extension of glyceraldehyde-3-phosphate dehydrogenase subunit B acts as an autoinhibitory domain regulated by thioredoxins and nicotinamide adenine dinucleotide. Author: Sparla F, Pupillo P, Trost P. Journal: J Biol Chem; 2002 Nov 22; 277(47):44946-52. PubMed ID: 12270927. Abstract: The regulatory isoform of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a light-activated enzyme constituted by subunits GapA and GapB. The NADPH-dependent activity of regulatory GAPDH from spinach chloroplasts was affected by the redox potential (E(m,7.9), -353 +/- 11 mV) through the action of thioredoxin f. The redox dependence of recombinant GapB (E(m,7.9), -347 +/- 9 mV) was similar to native GAPDH, whereas GapA was essentially redox-insensitive. GapB mutants having one or two C-terminal cysteines mutated into serines (C358S, C349S, C349S/C358S) were less redox-sensitive than GapB. Different mutants with other cysteines substituted by serines (C18S, C274S, C285S) still showed strong redox regulation. Fully active GapB was a tetramer of B-subunits, and, when incubated with NAD, it associated to a high molecular weight oligomer showing low NADPH-dependent activity. The C-terminal GapB mutants (C358S, C349S, C349S/C358S) were active tetramers unable to aggregate to higher oligomers in the presence of NAD, whereas other mutants (C18S, C274S, C285S) again behaved like GapB. We conclude that a regulatory disulfide, between Cys-349 and Cys-358 of the C-terminal extension of GapB, does form in the presence of oxidized thioredoxin. This covalent modification is required for the NAD-dependent association into higher oligomers and inhibition of the NADPH-activity. By leading to GAPDH autoinhibition, thioredoxin and NAD may thus concur to the dark inactivation of the enzyme in vivo.[Abstract] [Full Text] [Related] [New Search]