These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Population forecasting: do simple models outperform complex models? Author: Rogers A. Journal: Math Popul Stud; 1995 Jul; 5(3):187-202, 291. PubMed ID: 12290946. Abstract: "This paper reviews the growing literature on population forecasting to examine a curious paradox: despite continuing refinements in the specification of models used to represent population dynamics, simple exponential growth models, it is claimed, continue to outperform such more complex models in forecasting exercises. Shrinking a large complex model in order to simplify it typically involves two processes: aggregation and decomposition. Both processes are known to introduce biases into the resulting representations of population dynamics. Thus it is difficult to accept the conclusion that simple models outperform complex models. Moreover, assessments of forecasting performance are notoriously difficult to carry out, because they inevitably depend not only on the models used but also on the particular historical periods selected for examination.... This paper reviews some of the recent debate on the simple versus complex modeling issue and links it to the questions of model bias and distributional momentum impacts." (SUMMARY IN FRE)[Abstract] [Full Text] [Related] [New Search]