These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nuclear factor-kappa B activation pathway in intestinal epithelial cells is a major regulator of chemokine gene expression and neutrophil migration induced by Bacteroides fragilis enterotoxin. Author: Kim JM, Cho SJ, Oh YK, Jung HY, Kim YJ, Kim N. Journal: Clin Exp Immunol; 2002 Oct; 130(1):59-66. PubMed ID: 12296854. Abstract: Although intestinal epithelial cells are known to up-regulate the expression of several chemokine genes in response to the stimulation with B. fragilis enterotoxin (BFT), there has been little understanding on the cellular mechanisms of BFT-induced mucosal inflammation. To test whether nuclear transcriptional factor-kappa B (NF-kappaB) is involved in the process, we stimulated intestinal epithelial cells with BFT, and evaluated the signalling NF-kappaB pathways. BFT increased signals of NF-kappaB in HT-29 and T84 epithelial cell lines as well as primary human colon epithelial cells. NF-kappaB molecules activated by BFT stimulation were composed of p65 and p50 heterodimers. In contrast, BFT decreased the signals of IkappaBalpha and IkappaB epsilon, as assessed by immunoblot. Super-repressors of IkappaBalpha, IkappaB kinase (IKK)beta, and NF-kappaB inducing kinase (NIK) inhibited an up-regulated transcription of downstream target gene (CXCL8) of NF-kappaB. Moreover, blocking the activation of NF-kappaB by MG-132 or antisense p50 oligonucleotide transfection resulted in down-regulated expression of chemokines such as CXCL1, CXCL8, and CCL2 in BFT-stimulated HT-29 cells. In addition, NF-kappaB inhibition suppressed the BFT-induced neutrophil transepithelial migration in T84 cells. These results indicate that NF-kappaB can be a central regulator of chemokine gene expression in BFT-stimulated intestinal epithelial cells and may be an important regulator of neutrophil migration.[Abstract] [Full Text] [Related] [New Search]