These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Parametric versus Cox's model: an illustrative analysis of divorce in Canada. Author: Balakrishnan TR, Rao KV, Krotki KJ, Lapierre-adamcyk E. Journal: Janasamkhya; 1988 Jun; 6(1):13-27. PubMed ID: 12315557. Abstract: Recent demographic literature clearly recognizes the importance of survival modes in the analysis of cross-sectional event histories. Of the various survival models, Cox's (1972) partial parametric model has been very popular due to its simplicity, and readily available computer software for estimation, sometimes at the cost of precision and parsimony of the model. This paper focuses on parametric failure time models for event history analysis such as Weibell, lognormal, loglogistic, and exponential models. The authors also test the goodness of fit of these parametric models versus the Cox's proportional hazards model taking Kaplan-Meier estimate as base. As an illustration, the authors reanalyze the Canadian Fertility Survey data on 1st marriage dissolution with parametric models. Though these parametric model estimates were not very different from each other, there seemed to be a slightly better fit with loglogistic. When 8 covariates were used in the analysis, it was found that the coefficients were similar in the models, and the overall conclusions about the relative risks would not have been different. The findings reveal that in marriage dissolution, the differences according to demographic and socioeconomic characteristics may be far more important than is generally found in many studies. Therefore, one should not treat the population as homogeneous in analyzing survival probabilities of marriages, other than for cursory analysis of overall trends.[Abstract] [Full Text] [Related] [New Search]