These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High throughput mutation screening of the factor VIII gene (F8C) in hemophilia A: 37 novel mutations and genotype-phenotype correlation. Author: Citron M, Godmilow L, Ganguly T, Ganguly A. Journal: Hum Mutat; 2002 Oct; 20(4):267-74. PubMed ID: 12325022. Abstract: Hemophilia A (HEMA) is an X-linked bleeding disorder caused by mutations in the factor VIII gene (F8C). Molecular genetic testing for the factor VIII gene is challenging due to its large size. Here we present results of high throughput mutation scanning based on Southern blot analysis and direct sequencing of all PCR amplified coding exons and the exon-intron boundaries of the factor VIII gene. The results of mutation analysis on 89 hemophiliac males showed presence of a disease-causing mutation in 80 individuals (90%, 95% CI of 82%-95%). Seven out of nine mutation-negative individuals were severe cases of hemophilia A with < 1% factor VIII protein in the blood. The correlation of phenotype with genotype as observed in this study was not absolute. This finding is supported by similar observations in the international database for hemophilia A mutations (HAMSTeRS). This issue raises the importance of genotypes at other loci that can act as modifiers for the phenotype. Thirty-four novel mutations and three novel substitutions for previously reported amino acid residues were identified in this series of 80 mutations. The mutations cover the full spectrum including rearrangements, deletions, frameshift, and point mutations. The novel missense mutations require careful evaluation. Prediction of a mutation as the disease-causing allele was made from the nature of the substitution and the degree of conservation of the mutated amino acid among species that have diverged in evolution. In some cases segregation analysis of the mutation with disease condition was performed when other family members were available.[Abstract] [Full Text] [Related] [New Search]