These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Temporal relationship between cytosolic free Ca(2+) and membrane potential during hypotonic turgor regulation in a brackish water Charophyte Lamprothamnium succinctum. Author: Okazaki Y, Ishigami M, Iwasaki N. Journal: Plant Cell Physiol; 2002 Sep; 43(9):1027-35. PubMed ID: 12354920. Abstract: Internodal cells of a brackish water charophyte, Lamprothamnium succinctum, regulate turgor pressure in response to changes in external osmotic pressure by modifying vacuolar concentrations of KCl. An increase in cytosolic concentration of free Ca(2+) ([Ca(2+)](c)) is necessary for the progress of turgor regulation induced by hypotonic treatment. Initial changes in membrane potential and [Ca(2+)](c) upon hypotonic treatment were measured to examine the temporal relationship between the two parameters. Fura-dextran (potassium salt, M(r) 10,000, anionic) that had been injected into the cytosol was used to measure [Ca(2+)](c). Membrane potential and membrane conductance under a current-clamp condition were also measured. Decrease in external osmotic pressure by 0.16 Osm induced a simultaneous increase in [Ca(2+)](c) with both depolarization of the membrane and increase in the membrane conductance. Decrease in external osmotic pressure by 0.05 Osm induced a simultaneous increase in [Ca(2+)](c) with membrane depolarization but the increase in membrane conductance started later than the other two processes. There was a close temporal relationship between the increase in [Ca(2+)](c) and membrane depolarization on the initial response of turgor regulation induced by hypotonic treatment.[Abstract] [Full Text] [Related] [New Search]