These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The crystal structure of YdcE, a 4-oxalocrotonate tautomerase homologue from Escherichia coli, confirms the structural basis for oligomer diversity. Author: Almrud JJ, Kern AD, Wang SC, Czerwinski RM, Johnson WH, Murzin AG, Hackert ML, Whitman CP. Journal: Biochemistry; 2002 Oct 08; 41(40):12010-24. PubMed ID: 12356301. Abstract: The tautomerase superfamily consists of three major families represented by 4-oxalocrotonate tautomerase (4-OT), 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI), and macrophage migration inhibitory factor (MIF). The members of this superfamily are structurally homologous proteins constructed from a simple beta-alpha-beta fold that share a key mechanistic feature; they use an amino-terminal proline, which has an unusually low pK(a), as the general base in a keto-enol tautomerization. Several new members of the 4-OT family have now been identified using PSI-BLAST and categorized into five subfamilies on the basis of multiple-sequence alignments and the conservation of key catalytic and structural residues. The members of subfamily 5, which includes a hypothetical protein designated YdcE from Escherichia coli, are predicted not to form hexamers. The crystal structure of YdcE has been determined to 1.35 A resolution and confirms that it is a dimer. In addition, YdcE complexed with (E)-2-fluoro-p-hydroxycinnamate, identified as a potent competitive inhibitor of this enzyme, as well as N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) and benzoate are also presented. These latter crystal structures reveal the location of the active site and suggest a mechanism for the observed YdcE-catalyzed tautomerization reaction. The dimeric arrangement of YdcE represents a new structure in the 4-OT family and demonstrates structural diversity within the 4-OT family not previously reported.[Abstract] [Full Text] [Related] [New Search]