These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tartrate dehydrogenase catalyzes the stepwise oxidative decarboxylation of D-malate with both NAD and thio-NAD. Author: Karsten WE, Tipton PA, Cook PF. Journal: Biochemistry; 2002 Oct 08; 41(40):12193-9. PubMed ID: 12356321. Abstract: Tartrate dehydrogenase catalyzes the divalent metal ion- and NAD-dependent oxidative decarboxylation of D-malate to yield CO(2), pyruvate, and NADH. The enzyme also catalyzes the metal ion-dependent oxidation of (+)-tartrate to yield oxaloglycolate and NADH. pH-rate profiles and isotope effects were measured to probe the mechanism of this unique enzyme. Data suggest a general base mechanism with likely general acid catalysis in the oxidative decarboxylation of D-malate. Of interest, the mechanism of oxidative decarboxylation of D-malate is stepwise with NAD(+) or the more oxidizing thio-NAD(+). The mechanism does not become concerted with the latter as observed for the malic enzyme, which catalyzes the oxidative decarboxylation of L-malate [Karsten, W. E., and Cook, P. F. (1994) Biochemistry 33, 2096-2103]. It appears the change in mechanism observed with malic enzyme is specific to its transition state structure and not a generalized trait of metal ion- and NAD(P)-dependent beta-hydroxy acid oxidative decarboxylases. The V/K(malate) pH-rate profile decreases at low and high pH and exhibits pK(a) values of about 6.3 and 8.3, while that for V/K(tartrate) (measured from pH 7.5 to pH 9) exhibits a pK(a) of 8.6 on the basic side. A single pK(a) of 6.3 is observed on the acid side of the V(max) pH profile, but the pK(a) seen on the basic side of the V/K pH profiles is not observed in the V(max) pH profiles. Data suggest the requirement for a general base that accepts a proton from the 2-hydroxyl group of either substrate to facilitate hydride transfer. A second enzymatic group is also required protonated for optimum binding of substrates and may also function as a general acid to donate a proton to the enolpyruvate intermediate to form pyruvate. The (13)C isotope effect, measured on the decarboxylation of D-malate using NAD(+) as the dinucleotide substrate, decreases from a value of 1.0096 +/- 0.0006 with D-malate to 1.00787 +/- 0.00006 with D-malate-2-d, suggesting a stepwise mechanism for the oxidative decarboxylation of D-malate. Using thio-NAD(+) as the dinucleotide substrate the (13)C isotope effects are 1.0034 +/- 0.0007 and 1.0027 +/- 0.0002 with D-malate and D-malate-2-d, respectively.[Abstract] [Full Text] [Related] [New Search]