These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TGFbeta induces GDNF responsiveness in neurons by recruitment of GFRalpha1 to the plasma membrane.
    Author: Peterziel H, Unsicker K, Krieglstein K.
    Journal: J Cell Biol; 2002 Oct 14; 159(1):157-67. PubMed ID: 12370242.
    Abstract:
    We have previously shown that the neurotrophic effect of glial cell line-derived neurotrophic factor (GDNF) in vitro and in vivo requires the presence of transforming growth factor (TGF)beta. Using primary neurons (chick E8 ciliary) we show that the combination of GDNF plus TGFbeta promotes survival, whereas the single factors do not. This cooperative effect is inhibited by blocking the extracellular signal-regulated kinase (ERK)/MAPK pathway, but not by interfering with the PI3 kinase signaling cascade. Although there is no functional GDNF signaling in the absence of TGFbeta, pretreatment with TGFbeta confers GDNF responsiveness to the cells. This is not due to upregulation of GDNF receptors mRNA and protein, but to TGFbeta-induced recruitment of the glycosyl-phosphatidylinositol-anchored GDNF receptor (GFR)alpha1 to the plasma membrane. This is supported by the fact that GDNF in the presence of a soluble GFRalpha1 can promote survival in the absence of TGFbeta. Our data suggest that TGFbeta is involved in GFRalpha1 membrane translocation, thereby permitting GDNF signaling and neurotrophic effects.
    [Abstract] [Full Text] [Related] [New Search]