These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Porphyromonas gingivalis lipopolysaccharide interferes with salivary mucin synthesis through inducible nitric oxide synthase activation by ERK and p38 kinase. Author: Slomiany BL, Slomiany A. Journal: Biochem Biophys Res Commun; 2002 Oct 11; 297(5):1149-53. PubMed ID: 12372406. Abstract: Porphyromonas gingivalis is a Gram-negative periodontopathic bacterium colonizing the oral cavity and its lipopolysaccharide (LPS) is a key factor in the development of periodontitis. We investigated the effect of P. gingivalis LPS on the cellular responses associated with mucin synthesis in sublingual salivary gland acinar cells. Exposure of the acinar cells to the LPS led to a dose-dependent decrease in mucin synthesis and was accompanied by a massive induction in inducible nitric oxide synthase (NOS-2) activity and the increase in NO production, caspase-3 activity and apoptosis. Inhibition of extracellular signal-regulated kinase (ERK) with PD98059 accelerated the LPS-induced decrease in the glycoprotein synthesis and caused further increase in apoptosis and NOS-2 activity, while the blockade of p38 mitogen-activated kinase (MAPK) with SB203580 countered the LPS-induced reduction in the glycoprotein synthesis and obviated the induced increases in NOS-2 and apoptosis. Introduction of NOS-2 inhibitor, L-NAME, not only countered the LPS-induced increase in NO generation, caspase-3 activity and apoptosis, but caused the impedance of the LPS inhibition on mucin synthesis. The findings point to the upregulation in NOS-2 expression by P. gingivalis LPS as a key detrimental culprit affecting salivary mucin synthesis.[Abstract] [Full Text] [Related] [New Search]