These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thrombin facilitation of voltage-gated sodium channel activation in human cardiomyocytes: implications for ischemic sodium loading.
    Author: Pinet C, Le Grand B, John GW, Coulombe A.
    Journal: Circulation; 2002 Oct 15; 106(16):2098-103. PubMed ID: 12379580.
    Abstract:
    BACKGROUND: Thrombin plays a role in mediating ischemic injury and cardiac arrhythmias, but the mechanisms involved are poorly understood. Because voltage-gated sodium channels (VGSCs) have not previously been considered, putative effects of thrombin on VGSC function were investigated in human isolated cardiomyocytes. METHODS AND RESULTS: Sodium current (I(Na)) was recorded by the whole-cell patch-clamp method. Thrombin increased peak I(Na) amplitude in an activity-dependent manner, from 1 to 100 U/mL, with an apparent EC50 of 91+/-16 U/mL. When tested at 32 U/mL, thrombin-increased I(Na) was abolished by tetrodotoxin (50 micromol/L). Thrombin effects on I(Na) were reversible and repeatable, and 100 U/mL doubled peak I(Na) amplitude. Thrombin (32 U/mL) shifted I(Na) activation to hyperpolarized potentials without affecting steady-state inactivation, producing unusually large increases in window current. Hirudin (320 U/mL) or haloenol lactone suicide substrate (10 micromol/L) failed to significantly affect these effects of thrombin. In current-clamped cardiomyocytes, thrombin (32 U/mL) depolarized resting membrane potential by 10 mV. CONCLUSIONS: Facilitation of VGSC activation causing large increases in window current is a major mechanism by which thrombin may promote ischemic sodium loading and injury.
    [Abstract] [Full Text] [Related] [New Search]