These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Iron(VI) and iron(V) oxidation of thiocyanate.
    Author: Sharma VK, Burnett CR, O'Connor DB, Cabelli D.
    Journal: Environ Sci Technol; 2002 Oct 01; 36(19):4182-6. PubMed ID: 12380093.
    Abstract:
    Thiocyanate (SCN-) is used in many industrial processes and is commonly found in industrial and mining waste-waters. The removal of SCN- is required because of its toxic effects. The oxidation of thiocyanate (SCN-) by environmentally friendly oxidants, Fe(VI) and Fe(V), has been studied anaerobically using stopped-flow and premix pulse radiolysis techniques. The stoichiometry with Fe(VI) was determined to be 4HFeO(4-) + SCN(-) + 5H2O-->4Fe(OH)3 + SO4(2-) + CNO(-) + O2 + 2OH-. The rate law for the oxidation of SCN- by Fe(VI) was found to be -d[Fe(VI)]/dt = k11([H+]/([H+] + Ka,HFeO4)) [Fe(VI)][SCN-] where k11 = 2.04 +/- 0.04 x 10(3) M-1 s-1 and pKa,HFeO4 = 7.33. A mechanism is proposed that agrees with the observed reaction stoichiometry and rate law. The rate of oxidation of SCN- by Fe(V) was approximately 3 orders of magnitude faster than Fe(VI). The higher reactivity of Fe(V) with SCN- indicates that oxidations by Fe(VI) may be enhanced in the presence of appropriate one-electron-reducing agents. The results suggest that the effective removal of SCN- can be achieved by Fe(VI) and Fe(V).
    [Abstract] [Full Text] [Related] [New Search]