These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterizing voltage-dependent Ca(2+) channels coupled to VIP release and NO synthesis in enteric synaptosomes. Author: Kurjak M, Sennefelder A, Aigner M, Schusdziarra V, Allescher HD. Journal: Am J Physiol Gastrointest Liver Physiol; 2002 Nov; 283(5):G1027-34. PubMed ID: 12381515. Abstract: In enteric synaptosomes of the rat, the role of voltage-dependent Ca(2+) channels in K(+)-induced VIP release and nitric oxide (NO) synthesis was investigated. Basal VIP release was 39 +/- 4 pg/mg, and cofactor-substituted NO synthase activity was 7.0 +/- 0.8 fmol. mg(-1). min(-1). K(+) depolarization (65 mM) stimulated VIP release Ca(2+) dependently (basal, 100%; K(+), 172.2 +/- 16.2%; P < 0.05, n = 5). K(+)-stimulated VIP release was reduced by blockers of the P-type (omega-agatoxin-IVA, 3 x 10(-8) M) and N-type (omega-conotoxin-GVIA, 10(-6) M) Ca(2+) channels by ~50 and 25%, respectively, but not by blockers of the L-type (isradipine, 10(-8) M), Q-type (omega-conotoxin-MVIIC, 10(-6) M), or T-type (Ni(2+), 10(-6) M) Ca(2+) channels. In contrast, NO synthesis was suppressed by omega-agatoxin-IVA, omega-conotoxin-GVIA, and isradipine by ~79, 70, and 70%, respectively, whereas Ni(2+) and omega-conotoxin-MVIIC had no effect. These findings are suggestive of a coupling of depolarization-induced VIP release primarily to the P- and N-type Ca(2+) channels, whereas NO synthesis is presumably dependent on Ca(2+) influx not only via the P- and N- but also via the L-type Ca(2+) channel. In contrast, none of the Ca(2+) channel blockers affected VIP release evoked by exogenous NO, suggesting that NO induces VIP secretion by a different mechanism, presumably involving intracellular Ca(2+) stores.[Abstract] [Full Text] [Related] [New Search]