These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Author: Su HL, Li SS. Journal: Gene; 2002 Aug 21; 296(1-2):65-73. PubMed ID: 12383504. Abstract: The SUMO (small ubiquitin-like modifier) protein and ubiquitin have similar 3-D structure. Sumolyzation and ubiquitination exhibit similar biological processes for post-translational modification. However, unlike ubiquitination, which targets proteins for degradation, sumolyzation participates in a number of cellular processes such as nuclear transport, transcriptional regulation, apoptosis and protein stability. The human genome contains three SUMO-1/2/3 functional genes, as well as eight SUMO-1 pseudogenes and 23 SUMO-2 pseudogenes, but no SUMO-3 pseudogenes. The protein-coding sequence of the SUMO-1 gene is interrupted by four introns, while those of SUMO-2 and SUMO-3 genes are interrupted by three introns. Human SUMO-1 protein exhibits 44% sequence identity with SUMO-2 and SUMO-3 proteins, while SUMO-2 and SUMO-3 proteins share 86% sequence identity. Phylogenetic analyses indicate that the SUMO-3 gene was derived from the SUMO-2 gene. SUMO-1 mRNA appears to be most abundant in human epithelial HeLa, kidney 293 and neuronal NT2 cells, while the SUMO-3 mRNA seems to be much less abundant than SUMO-2 mRNA, especially in HeLa and 293 cells. Many cellular proteins of high molecular weights were covalently modified by SUMO-1/2/3 proteins. However, some free form of SUMO-2/3 proteins was also detected. Most SUMO-1/2/3 proteins were shown to be localized on nuclear membrane, nuclear bodies and cytoplasm, respectively.[Abstract] [Full Text] [Related] [New Search]