These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Platelet factor 4 inhibits FGF2-induced endothelial cell proliferation via the extracellular signal-regulated kinase pathway but not by the phosphatidylinositol 3-kinase pathway. Author: Sulpice E, Bryckaert M, Lacour J, Contreres JO, Tobelem G. Journal: Blood; 2002 Nov 01; 100(9):3087-94. PubMed ID: 12384403. Abstract: Platelet factor 4 (PF-4) is a member of the chemokine family with powerful antiangiogenic properties. The mechanism by which PF-4 inhibits endothelial cell proliferation is unclear. We investigated the effects of PF-4 on the intracellular signal transduction induced by basic fibroblast growth factor (FGF2). We found that PF-4 (10 microg/mL) inhibited the FGF2-induced proliferation of adrenal cortex capillary endothelial (ACE) cells. The inhibition of MEK1/2 (mitogen-activated protein kinase kinase) by PD98059 or of PI3K (phosphatidylinositol 3-kinase) by Ly294002 abolished the proliferation induced by FGF2, suggesting that ACE cell proliferation required dual signaling through both the extracellular signal-regulated kinase (ERK) and PI3K pathways. Ly294002 had no significant effect on ERK phosphorylation, whereas PD98059 had a weak effect on the phosphorylation of Akt, suggesting that 2 separate cascades are required for ACE cell proliferation. The addition of PF-4 (10 microg/mL) significantly inhibited ERK phosphorylation (95%), showing that PF-4 acted directly on or upstream from this kinase. Surprisingly, PF-4 did not affect FGF2-induced Akt phosphorylation. This suggests that PF-4 disrupts FGF2 signaling via an intracellular mechanism of inhibition. To exclude the possibility that PF-4 inhibited the binding of FGF2 to only one FGF receptor, preferentially activating the ERK pathway, we investigated the effect of PF-4 on FGF2-induced ERK and Akt phosphorylation, using mutant heparan sulfate-deficient Chinese hamster ovary cells transfected with the FGF-R1 cDNA. The addition of PF-4 (1 microg/mL) significantly inhibited ERK phosphorylation (90%), with no effect on Akt phosphorylation, suggesting that PF-4 acts downstream from the FGF-R1 receptor. In conclusion, this is the first report showing that PF-4 inhibits FGF2 activity downstream from its receptor.[Abstract] [Full Text] [Related] [New Search]