These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phorbol ester stimulates a protein kinase C-mediated agatoxin-TK-sensitive calcium permeability pathway in human red blood cells. Author: Andrews DA, Yang L, Low PS. Journal: Blood; 2002 Nov 01; 100(9):3392-9. PubMed ID: 12384442. Abstract: Calcium entry into mature erythrocytes (red blood cells; RBCs) is associated with multiple changes in cell properties. At low intracellular Ca(2+), efflux of potassium and water predominates, leading to changes in erythrocyte rheology. At higher Ca(2+) content, activation of kinases and phosphatases, rupture of membrane-to-skeleton bridges, stimulation of a phospholipid scramblase and phospholipase C, and induction of transglutaminase-mediated protein cross-linking are also observed. Because the physiologic relevance of these latter responses depends partially on whether Ca(2+) entry involves a regulated channel or nonspecific leak, we explored mechanisms that initiate controlled Ca(2+) influx. Protein kinase C (PKC) was considered a prime candidate for the pathway regulator, and phorbol-12 myristate-13 acetate (PMA), a stimulator of PKC, was examined for its influence on erythrocyte Ca(2+). PMA was found to stimulate a rapid, dose-dependent influx of calcium, as demonstrated by the increased fluorescence of an entrapped Ca(2+)-sensitive dye, Fluo-3/AM. The PMA-induced entry was inhibited by staurosporine and the PKC-selective inhibitor chelerythrine chloride, but was activated by the phosphatase inhibitors okadaic acid and calyculin A. The PMA-promoted calcium influx was also inhibited by omega-agatoxin-TK, a calcium channel blocker specific for Ca(v)2.1 channels. To confirm that a Ca(v)2.1-like calcium channel exists in the mature erythrocyte membrane, RBC membrane preparations were immunoblotted with antiserum against the alpha(1A) subunit of the channel. A polypeptide of the expected molecular weight (190 kDa) was visualized. These studies indicate that an omega-agatoxin-TK-sensitive, Ca(v)2.1-like calcium permeability pathway is present in the RBC membrane and that it may function under the control of kinases and phosphatases.[Abstract] [Full Text] [Related] [New Search]