These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An antisense oligonucleotide targeted to human Ku86 messenger RNA sensitizes M059K malignant glioma cells to ionizing radiation, bleomycin, and etoposide but not DNA cross-linking agents.
    Author: Belenkov AI, Paiement JP, Panasci LC, Monia BP, Chow TY.
    Journal: Cancer Res; 2002 Oct 15; 62(20):5888-96. PubMed ID: 12384553.
    Abstract:
    Ku is a heterodimer of M(r) 70,000 and M(r) 86,000 subunits. It binds with strong affinity to DNA ends and is indispensable for nonhomologous DNA end joining (NHEJ) and V(D)J recombination. In this study, we investigated whether down-regulation of the Ku86 gene, by 2'-O-methoxyethyl/uniform phosphorothioate chimeric antisense oligonucleotides (ASOs), increases the sensitivity of the DNA-protein kinase catalytic subunit (PKcs)-proficient human glioma cell line (M059K), and its isogenic DNA-PKcs-deficient counterpart (M059J), to ionizing radiation and anticancer drugs. Transfection of these cell lines with 200 nM Ku86 antisense ASOs was associated with a specific decrease in Ku86 mRNA levels (IC(50) <25 nM; n = 3) and a concomitant rapid decrease (<10% of control) in Ku86 protein expression. Moreover, transfection of M059K cells with Ku86 antisense ASOs markedly increased cell death after treatment with ionizing radiation, bleomycin, and etoposide. However, no sensitization to the DNA cross-linking agents chlorambucil and cisplatin was observed after Ku86 antisense transfection. As expected, transfection of M059J cells with Ku86 antisense ASOs did not result in any sensitization to ionizing radiation, bleomycin, or DNA cross-linking agents, but there was a 2-fold increase in sensitivity to etoposide. Thus, our results indicate that antisense ASOs targeted against Ku86 may increase the efficacy of radiotherapy and DNA-damaging agents in tumor treatment. Furthermore, Ku86 antisense ASOs may be used to create a temporal knockout in different human cell lines to further investigate the biological roles of Ku86.
    [Abstract] [Full Text] [Related] [New Search]