These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Involvement of phospholipase D in insulin-like growth factor-I-induced activation of extracellular signal-regulated kinase, but not phosphoinositide 3-kinase or Akt, in Chinese hamster ovary cells.
    Author: Banno Y, Takuwa Y, Yamada M, Takuwa N, Ohguchi K, Hara A, Nozawa Y.
    Journal: Biochem J; 2003 Jan 15; 369(Pt 2):363-8. PubMed ID: 12385647.
    Abstract:
    Available evidence suggests the involvement of phospholipase D (PLD) in cell proliferation and survival. Phosphoinositide 3-kinase (PI 3-kinase)/Akt and extracellular signal-regulated kinases (ERKs) are signalling molecules that have essential roles in cell proliferation and survival. We previously demonstrated that sphingosine 1-phosphate (S1P)-induced PLD activation via the G-protein-coupled receptor endothelial differentiation gene (EDG) 3/S1P(3) was involved in S1P-induced stimulation of PI 3-kinase and Akt. In the present study, we examined the involvement of two PLD isozymes, PLD1 and PLD2, in insulin-like growth factor (IGF)-I receptor tyrosine kinase-mediated stimulation of PI 3-kinase/Akt and ERKs. IGF-I and to a lesser degree S1P stimulated PI 3-kinase activity in Chinese hamster ovary cells overexpressing EDG3/S1P(3). IGF-I-induced ERK phosphorylation was suppressed by butan-1-ol, but not butan-2-ol, whereas no effect of butanol was observed in IGF-I-induced Akt activation in S1P(3)-overexpressing Chinese hamster ovary cells. Overexpression of wild-type PLD1 and PLD2 substantially potentiated S1P-, but not IGF-I-, induced activation of PI 3-kinase and Akt, whereas overexpression of the catalytically inactive mutant of PLD1 or PLD2 did not affect the responses to either agonist. On the other hand, overexpression of wild-type PLD1 and PLD2 potentiated IGF-I- and, to much smaller extents, S1P-induced ERK stimulation. ERK activation by IGF-I as well as S1P was dependent on Ras, but Akt activation by IGF-I was not dependent on Ras. These results suggest that PLDs are involved in growth factor regulation of at least two signalling pathways, PI 3-kinase/Akt and ERKs, depending on the class of cell-surface receptors.
    [Abstract] [Full Text] [Related] [New Search]