These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Organization of the male gonad in a protogynous fish, Thalassoma bifasciatum (Teleostei: Labridae).
    Author: Koulish S, Kramer CR, Grier HJ.
    Journal: J Morphol; 2002 Dec; 254(3):292-311. PubMed ID: 12386899.
    Abstract:
    Although the testis in teleosts has been investigated for many years, little attention has been paid to the structure of the outer layers that enclose the testis and to their possible contributions to its organization. The present study in a protogynous male labrid, Thalassoma bifasciatum (bluehead wrasse), describes the arrangement and cytology of these tissues (for convenience, referred to collectively as the outer wall, OW) which include: the outer peritoneal layer and subjacent collagen fibers, myoid cells and diverse other cells and tissues, e.g., fibrocytes, presumptive mesenchyme, macrophages, granulocytes, nerves, and blood vessels. Beneath the OW are two compartments; one is the gamete-laden spermatocysts, the other the interstitium, which is composed of cells and tissues that lie between the spermatocysts. Both OW and interstitium contain similar kinds of tissues and cells. Moreover, the layers of the OW immediately subjacent to the peritoneum are continuous with that in the interstitium. It is suggested that the continuity between these two areas provides opportunities for the exchange of cells that could aid in the maintenance and reorganization of the testis and with the myoid and neural tissue to establish an extensive, coordinated motile system that aids movement of sperm from spermatocysts to the ducts. A recent report on the reexamination of the germinal epithelium concept and its identification in the common snook, Centropomus undecimalis, stimulated us to examine the feasibility of applying this concept to gonad organization and gamete development in T. bifasciatum. In addition, the ultrastructure of the Sertoli cell and formation of spermatocysts are described. Spermatocysts increase in size during the development of gametes. Observations and discussion are presented suggesting how Sertoli cells may accommodate this growth and how new populations of these cells may arise in the mature adult. Finally, ultrastructural characteristics for each stage of spermatogenesis are presented and, using (3H)thymidine and autoradiography, data on the chronology of spermatogonia-sperm cycle are included.
    [Abstract] [Full Text] [Related] [New Search]