These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanism by which cAMP activates PI3-kinase and increases bile acid secretion in WIF-B9 cells. Author: Kagawa T, Varticovski L, Sai Y, Arias IM. Journal: Am J Physiol Cell Physiol; 2002 Dec; 283(6):C1655-66. PubMed ID: 12388099. Abstract: Previous studies in rat bile canalicular membrane vesicles and WIF-B9 cells revealed that cAMP-induced trafficking of ATP-binding cassette (ABC) transporters to the canalicular membrane and their activation require phosphoinositide 3-kinase (PI3-K) products. In the present studies, canalicular secretion of fluorescein isothiocyanate-glycocholate in WIF-B9 cells was increased by cAMP and a decapeptide that enhances PI3-K activity; these effects were inhibited by wortmannin. To determine the mechanism(s) whereby cAMP activates PI3-K, we examined signal transduction pathways in WIF-B9 and COS-7 cells. cAMP activated PI3-K in both cell lines in a phosphotyrosine-independent manner. PI3-K activity increased in association with p110 beta in both cell lines. The effect of cAMP was KT-5720 sensitive, suggesting involvement of protein kinase A. Expression of a dominant-negative beta-adrenergic receptor kinase COOH terminus (beta-ARKct), which blocks G beta gamma signaling, decreased PI3-K activation in both cell lines. cAMP increased GTP-bound Ras in COS-7 but not WIF-B9 cells. Expression of dominant-negative Ras abolished cAMP-mediated PI3-K, which suggests that the effect is downstream of Ras and G beta gamma. These data indicate that cAMP activates PI3-K in a cell type-specific manner and provide insight regarding mechanisms of PI3-K activation required for bile acid secretion.[Abstract] [Full Text] [Related] [New Search]