These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Epidermal growth factor inhibits amiloride-sensitive sodium absorption in renal collecting duct cells.
    Author: Shen JP, Cotton CU.
    Journal: Am J Physiol Renal Physiol; 2003 Jan; 284(1):F57-64. PubMed ID: 12388407.
    Abstract:
    The effects of the ERK pathway on electrogenic transepithelial Na(+) absorption by renal collecting duct cells were determined. Approximately 90% of the unstimulated short-circuit current (15 +/- 1 microA/cm(2), n = 10) across conditionally immortalized murine collecting duct epithelial cells (mCT1) is amiloride sensitive and is likely mediated by apical epithelial Na(+) channels. Chronic exposure (24 h) of the epithelial monolayers to either EGF (50 ng/ml) or transforming growth factor-alpha (TGF-alpha; 20 ng/ml) reduced amiloride-sensitive short-circuit current by >60%. The inhibitory effect of EGF on Na(+) absorption was not due to inhibition of basolateral Na(+)-K(+)-ATPase, because the pump current elicited by permeabilization of apical membrane with nystatin was not reduced by EGF. Chronic exposure of the mCT1 cells to EGF (20 ng/ml, 24 h) elicited a 70-85% decrease in epithelial Na(+) channel subunit mRNA levels. Exposure of mCT1 cells to either EGF (20 ng/ml) or PMA (150 nM) induced rapid phosphorylation of p42/p44 (ERK1/2) and pretreatment of the monolayers with PD-98059 (an ERK kinase inhibitor; 30 microM) prevented phosphorylation of p42/p44. Similarly, pretreatment of mCT1 monolayers with PD-98059 prevented the EGF- and PMA-induced inhibition of amiloride-sensitive Na(+) absorption. The results of these studies demonstrate that amiloride-sensitive Na(+) absorption by renal collecting duct cells is regulated by the ERK pathway. This pathway may play a role in alterations in ion transport that occur in polycystic kidney disease.
    [Abstract] [Full Text] [Related] [New Search]