These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 2'-NH(2)-MPTP [1-methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine] depletes serotonin and norepinephrine in rats: a comparison with 2'-CH(3)-MPTP [1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine].
    Author: Unger EL, Mazzola-Pomietto P, Murphy DL, Andrews AM.
    Journal: J Pharmacol Exp Ther; 2002 Nov; 303(2):527-33. PubMed ID: 12388632.
    Abstract:
    The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) analog, 1-methyl-4-(2'-aminophenyl)-1,2,3,6-tetrahydropyridine (2'-NH(2)-MPTP), depletes brain serotonin and norepinephrine in mice without affecting striatal dopamine. The present study was conducted to determine whether 2'-NH(2)-MPTP would be similarly neurotoxic to rats. Four injections of 20 mg/kg 2'-NH(2)-MPTP caused 80 to 90% depletions in serotonin and norepinephrine in frontal cortex and hippocampus in rats 1 week post-treatment. A lower dose of 2'-NH(2)-MPTP (4 x 15 mg/kg) also produced large decrements in serotonin and norepinephrine levels and in serotonin transporter density measured 3 weeks after neurotoxin administration. Furthermore, this lower dose of 2'-NH(2)-MPTP altered functional serotonin neurotransmission as evidenced by a 2-fold potentiation of 1-(3-chlorophenyl)-piperazine.2HCl-induced hyperthermia, an index of serotonergic denervation supersensitivity. At both doses, 2'-NH(2)-MPTP was without effect on striatal dopamine. For comparison, additional rats were treated with a second 2'-substituted analog of MPTP, 1-methyl-4-(2'-methylphenyl)-1,2,3,6-tetrahydropyridine (2'-CH(3)-MPTP), at 2 x 20 mg/kg. This dosing regimen causes substantial striatal dopamine depletion in mice. 2'-CH(3)-MPTP had no effect on brain levels of serotonin, norepinephrine, or dopamine in rats. Together, these results demonstrate that rats are sensitive to the toxic effects of 2'-NH(2)-MPTP but not to 2'-CH(3)-MPTP at doses known to cause neurotoxicity in mice. Moreover, this study clearly shows that 2'-NH(2)-MPTP can be utilized in rats as a tool to study the serotonergic and noradrenergic neurotransmitter systems.
    [Abstract] [Full Text] [Related] [New Search]