These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of extracellular-regulated kinase by 5-hydroxytryptamine(2A) receptors in PC12 cells is protein kinase C-independent and requires calmodulin and tyrosine kinases. Author: Quinn JC, Johnson-Farley NN, Yoon J, Cowen DS. Journal: J Pharmacol Exp Ther; 2002 Nov; 303(2):746-52. PubMed ID: 12388661. Abstract: 5-Hydroxytryptamine (5-HT)(2A) receptors have been implicated to play a role in both the treatment and pathophysiology of a number of psychiatric disorders. Therefore, the coupling of this receptor to signals, such as extracellular signal-regulated kinase (ERK), that elicit long-term neuronal changes may be relevant. In the present study we examined the coupling of the G(q)-coupled receptor to ERK in PC12 cells, a cell line commonly used as a neuronal model system. Activation of ERK occurred through a pathway different than the protein kinase C-dependent pathways described previously in studies of non-neuronal cells. Activation of ERK, in PC12 cells, was inhibited by both chelation of extracellular Ca(2+) and by depletion of intracellular Ca(2+) stores. Surprisingly, activation was not inhibited, but actually potentiated, by a variety of protein kinase C inhibitors covering all known protein kinase C isoforms. In contrast, the coupling of receptor to activation of ERK was found to be sensitive to N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7) and N-(4-aminobutyl)-5-chloro-1-naphthalenesulfonamide (W13), inhibitors of calmodulin, but not to 1-(N,O-bis[5-isoquinolinesulfonyl]-N-methyl-L-tyrosyl)-4-phenylpiperazine (KN62) and 2-[N-(2-hydroxyethyl)]-N-4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine) (KN93), inhibitors of calmodulin-dependent protein kinase. Additionally, the general tyrosine kinase inhibitor genistein, as well as the Src inhibitor PP1 and the epidermal growth factor receptor kinase inhibitor 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG 1478), inhibited receptor-mediated activation of ERK, suggesting a role for tyrosine kinases. In fact, 5-HT was found to stimulate tyrosine phosphorylation of a number of proteins, and this phosphorylation was inhibited by W7. 5-HT(2A) receptor-activation of ERK through a protein kinase C-independent pathway requiring Ca(2+)/calmodulin/tyrosine kinases represents a pathway distinct from those described in studies of non-neuronal cells.[Abstract] [Full Text] [Related] [New Search]