These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chylomicron and palmitate metabolism by perfused hearts from diabetic mice. Author: Neitzel AS, Carley AN, Severson DL. Journal: Am J Physiol Endocrinol Metab; 2003 Feb; 284(2):E357-65. PubMed ID: 12397026. Abstract: Hydrolysis of triacylglycerols (TG) in circulating chylomicrons by endothelium-bound lipoprotein lipase (LPL) provides a source of fatty acids (FA) for cardiac metabolism. The effect of diabetes on the metabolism of chylomicrons by perfused mouse hearts was investigated with db/db (type 2) and streptozotocin (STZ)-treated (type 1) diabetic mice. Endothelium-bound heparin-releasable LPL activity was unchanged in both type 1 and type 2 diabetic hearts. The metabolism of LPL-derived FA was examined by perfusing hearts with chylomicrons containing radiolabeled TG and by measuring (3)H(2)O accumulation in the perfusate (oxidation) and incorporation of radioactivity into tissue TG (esterification). Rates of LPL-derived FA oxidation and esterification were increased 2.3-fold and 1.7-fold in db/db hearts. Similarly, LPL-derived FA oxidation and esterification were increased 3.4-fold and 2.5-fold, respectively, in perfused hearts from STZ-treated mice. The oxidation and esterification of [(3)H]palmitate complexed to albumin were also increased in type 1 and type 2 diabetic hearts. Therefore, diabetes may not influence the supply of LPL-derived FA, but total FA utilization (oxidation and esterification) was enhanced.[Abstract] [Full Text] [Related] [New Search]