These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of diabetes on pinacidil-induced antinociception in mice.
    Author: Zushida K, Onodera K, Kamei J.
    Journal: Eur J Pharmacol; 2002 Oct 25; 453(2-3):209-15. PubMed ID: 12398906.
    Abstract:
    The antinociceptive effects of pinacidil, an adenosine triphosphate (ATP)-sensitive K(+)i (K(ATP)) channel opener, were examined using the tail-flick test in non-diabetic and diabetic mice. Pinacidil i.c.v. produced dose-dependent antinociception in both non-diabetic and diabetic mice. There was no significant difference between the antinociceptive effect of i.c.v. pinacidil in non-diabetic mice and diabetic mice. The i.t. administration of pinacidil also produced dose-dependent antinociception in both non-diabetic and diabetic mice, however, the antinociceptive effect of i.t. pinacidil in diabetic mice was significantly greater than that in non-diabetic mice. The antinociceptive effect of i.c.v. or i.t. pinacidil was significantly antagonized by i.c.v. or i.t. glibenclamide, a K(ATP) channel blocker in both non-diabetic and diabetic mice. In non-diabetic mice, the antinociceptive effect of i.c.v. or i.t. administration of pinacidil was significantly antagonized by beta-funaltrexamine, a mu-opioid receptor antagonist, 7-benzylidenenaltrexone, a delta1-opioid receptor antagonist, naltriben, a delta2-opioid receptor antagonist, and nor-binaltorphimine, a kappa-opioid receptor antagonist. In diabetic mice, the antinociceptive effect of i.c.v. pinacidil was significantly reduced by 7-benzylidenenaltrexone, naltriben, and nor-binaltorphimine. However, beta-funaltrexamine had no effect on antinociception induced by i.c.v. pinacidil in diabetic mice. On the other hand, the antinociceptive effect of i.t. pinacidil was significantly antagonized by beta-funaltrexamine, 7-benzylidenenaltrexone, naltriben, and nor-binaltorphimine in diabetic mice. These results indicated that pinacidil produced antinociception through the release of opioid peptides acting at mu-, delta- and kappa-opioid receptors in surpraspinal and spinal cord of non-diabetic mice. On the other hand, in diabetic mice, the antinociception-induced by pinacidil was mediated through the release of opioid peptides acting at delta- and kappa-opioid receptors supraspinally, whereas pinacidil produced antinociception through the release of opioid peptides acting at mu-, delta-, and kappa-opioid receptors spinally.
    [Abstract] [Full Text] [Related] [New Search]