These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nucleotide and repeat length variation at the nonA gene of the Drosophila virilis group species and its effects on male courtship song. Author: Huttunen S, Vieira J, Hoikkala A. Journal: Genetica; 2002 Jun; 115(2):159-67. PubMed ID: 12403170. Abstract: Genes found to affect male courtship song characters in Drosophila melanogaster are good candidates when tracing genes responsible for species-specific songs in other Drosophila species. It has previously been shown that Thr-Gly repeat length variation at the period gene affects song traits in D. melanogaster, which gives the repetitive regions a special interest. In this work, we have characterised the patterns of nucleotide variation for gene regions containing two Gly and one Gln-Ala repeat in another D. melanogaster song gene, no-on-transient A, in D. virilis group species. The levels of nucleotide variability in D. virilis nonA were similar to those found for other genes of the species, and the gene sequences showed no signs of deviation from neutrality. The Gly 2 repeat preceding the central domain of the gene exhibited length variation, which did not, however, correlate with song variation either within D. virilis or between the species of D. virilis group. The Gly 3 repeat located on the other side of the central domain showed amino acid divergence parallel to the consensus phylogeny of the D. virilis group species. The species of the virilis subgroup having Asn after the first three glycines in this repeat have simple songs with no species-specificity, while the species of the montana subgroup having two Gly or Asn-Ser in this site have unique courtship songs. Amino acid differences between the species in this repeat may, however, reflect species phylogeny rather than have an effect on song divergence per se.[Abstract] [Full Text] [Related] [New Search]