These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hovering flight mechanics of neotropical flower bats (Phyllostomidae: Glossophaginae) in normodense and hypodense gas mixtures. Author: Dudley R, Winter Y. Journal: J Exp Biol; 2002 Dec; 205(Pt 23):3669-77. PubMed ID: 12409493. Abstract: Existing estimates of flight energetics in glossophagine flower bats, the heaviest hovering vertebrate taxon, suggest disproportionately high expenditure of mechanical power. We determined wingbeat kinematics and mechanical power expenditure for one of the largest flower bats (Leptonycteris curasoae Martinez and Villa) during hovering flight in normodense and hypodense gas mixtures. Additional experiments examined the effects of supplemental oxygen availability on maximum flight performance. Bats failed to sustain hovering flight at normoxic air densities averaging 63% that of normodense air. Kinematic responses to hypodense aerodynamic challenge involved increases in wing positional angles and in total stroke amplitude; wingbeat frequency was unchanged. At near-failure air densities, total power expenditure assuming perfect elastic energy storage was 17-42% greater than that for hovering in normodense air, depending on the assumed value for the profile drag coefficient. Assuming a flight muscle ratio of 26%, the associated muscle-mass-specific power output at the point of near-failure varied between 90.8 W kg(-1) (profile drag coefficient of 0.02) to 175.6 W kg(-1) (profile drag coefficient of 0.2). Hyperoxia did not enhance hovering performance in hypodense air, and, with the exception of a small increase (10%) in stroke plane angle, yielded no significant change in any of the kinematic parameters studied. Revised energetic estimates suggest that mechanical power expenditure of hovering glossophagines is comparable with that in slow forward flight.[Abstract] [Full Text] [Related] [New Search]