These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells.
    Author: Tsuboi T, da Silva Xavier G, Holz GG, Jouaville LS, Thomas AP, Rutter GA.
    Journal: Biochem J; 2003 Jan 15; 369(Pt 2):287-99. PubMed ID: 12410638.
    Abstract:
    Glucagon-like peptide-1 (GLP-1) is a potent regulator of glucose-stimulated insulin secretion whose mechanisms of action are only partly understood. In the present paper, we show that at low (3 mM) glucose concentrations, GLP-1 increases the free intramitochondrial concentrations of both Ca(2+) ([Ca(2+)](m)), and ATP ([ATP](m)) in clonal MIN6 beta-cells. Suggesting that cAMP-mediated release of Ca(2+) from intracellular stores is responsible for these effects, increases in [ATP](m) that were induced by GLP-1 were completely blocked by the Rp isomer of adenosine-3',5'-cyclic monophosphothioate (Rp-cAMPS), or by chelation of intracellular Ca(2+). Furthermore, inhibition of Ins(1,4,5) P (3) (IP(3)) receptors with xestospongin C, or application of ryanodine, partially inhibited GLP-1-induced [ATP](m) increases, and the simultaneous blockade of both IP(3) and ryanodine receptors (RyR) completely eliminated the rise in [ATP](m). GLP-1 appeared to prompt Ca(2+)-induced Ca(2+) release through IP(3) receptors via a protein kinase A (PKA)-mediated phosphorylation event, since ryanodine-insensitive [ATP](m) increases were abrogated with the PKA inhibitor, H89. In contrast, the effects of GLP-1 on RyR-mediated [ATP](m) increases were apparently mediated by the cAMP-regulated guanine nucleotide exchange factor cAMP-GEFII, since xestospongin C-insensitive [ATP](m) increases were blocked by a dominant-negative form of cAMP-GEFII (G114E,G422D). Taken together, these results demonstrate that GLP-1 potentiates glucose-stimulated insulin release in part via the mobilization of intracellular Ca(2+), and the stimulation of mitochondrial ATP synthesis.
    [Abstract] [Full Text] [Related] [New Search]