These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural effects of cofilin on longitudinal contacts in F-actin. Author: Bobkov AA, Muhlrad A, Kokabi K, Vorobiev S, Almo SC, Reisler E. Journal: J Mol Biol; 2002 Nov 01; 323(4):739-50. PubMed ID: 12419261. Abstract: Structural effects of yeast cofilin on skeletal muscle and yeast actin were examined in solution. Cofilin binding to native actin was non-cooperative and saturated at a 1:1 molar ratio, with K(d)<or=0.05 microM for both CaATP-G-actin and F-actin. Cofilin binding enhanced the fluorescence of dansyl ethylenediamine (DED) attached to Gln41 on the DNase I binding loop of skeletal muscle F-actin and decreased the fluorescence of AEDANS at Cys41 on yeast Q41C/C374S mutant F-actin. However, cofilin had no effect on the spectral properties of DED or AEDANS on CaATP-G-actin. Fluorescence energy transfer (FRET) from tryptophan residues to DED at Gln41 on skeletal muscle actin and to AEDANS at Cys41 on yeast Q41C/C374S actin was decreased by cofilin binding to F- but not to G-actin. Cofilin inhibited strongly the rate of interprotomer disulfide cross-linking of Cys41 to Cys374 on yeast Q41C mutant F-actin. Binding of cofilin enhanced excimer formation between pyrene probes attached to Cys41 and Cys374 on Q41C F-actin. These results indicate that cofilin alters the interface between subdomains 1 and 2 and shifts the DNase I binding loop away from subdomain 1 of an adjacent actin protomer. Cofilin reduced FRET from tryptophan residues to 4-azido-2-nitrophenyl-putrescine (ANP) at Gln41 in skeletal muscle F-but not in G-actin. However, following the interprotomer cross-linking of Gln41 to Cys374 in F-actin by ANP, cofilin binding did not change FRET from the tryptophan residues to ANP. This suggests that cofilin binding and the conformational effect on F-actin are not coupled tightly. Overall, this study provides solution evidence for the weakening of longitudinal, subdomain 2/1 contacts in F-actin by cofilin.[Abstract] [Full Text] [Related] [New Search]