These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Central melanocortin receptor agonist reduces spontaneous and scheduled meal size but does not augment duodenal preload-induced feeding inhibition. Author: Azzara AV, Sokolnicki JP, Schwartz GJ. Journal: Physiol Behav; 2002 Nov; 77(2-3):411-6. PubMed ID: 12419417. Abstract: Central melanocortin (MC) receptor agonists inhibit food intake and may be downstream mediators of the effects of central leptin, which (1) reduces food intake by selectively decreasing meal size and (2) augments the feeding-inhibitory effects of gastrointestinal food stimuli. Central administration of the MC-3/4 receptor (MC-3/4R) agonist, MTII, inhibits feeding in rats, but its effects on meal pattern and potential interactions with gastrointestinal controls of food intake remain unclear. We examined meal patterns and intake in male Sprague-Dawley rats following central intracerebroventricular administration of MTII (0.01-1.0 nmol) in two situations: (1) during daytime 60-min scheduled access to liquid glucose (12.5%) in combination with a duodenal preload of 12.5% glucose or physiological saline (4.4 ml/10 min), and (2) during subsequent overnight access to 45 mg of solid chow pellets. Both duodenal glucose preloads and MTII reduced subsequent glucose intake. However, no dose of MTII augmented the reductions in food intake produced by duodenal glucose alone. During overnight access to pelleted chow, the 0.1- and 1.0-nmol doses of MTII reduced food intake, meal size, meal duration, and body weight, and increased the satiety ratio (duration of intermeal interval/preceding meal size) but did not change meal frequency. The present data (1) demonstrate that MTII, like leptin, reduces food intake by a selective reduction in meal size and not meal frequency, and (2) suggest that MTII increases the feeding-inhibitory potency of negative feedback signals critical to the control of meal size during spontaneous chow access, but not scheduled access to palatable liquid nutrient solutions.[Abstract] [Full Text] [Related] [New Search]