These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chlorpromazine inhibits the glucocorticoid receptor-mediated gene transcription in a calcium-dependent manner.
    Author: Basta-Kaim A, Budziszewska B, Jaworska-Feil L, Tetich M, Leśkiewicz M, Kubera M, Lasoń W.
    Journal: Neuropharmacology; 2002 Nov; 43(6):1035-43. PubMed ID: 12423673.
    Abstract:
    Antipsychotic drugs can modulate transcription factors and also nuclear receptors, but their action on glucocorticoid receptors (GR)-members of the steroid/thyroid hormone receptor family has not been studied so far. In the present study we investigated effects of various antipsychotics on the glucocorticoid-mediated gene transcription in fibroblast cells, stably transfected with a mouse mammary tumor virus promoter (LMCAT cells). Chlorpromazine (3-100 microM) inhibited the corticosterone-induced gene transcription in a concentration- and time-dependent manner. Clozapine showed a similar, but less potent effect, while haloperidol acted only in high concentrations, and other antipsychotic drugs (sulpiride, raclopride, remoxipride) were without any effect. It was also found that a phorbol ester (an activator of protein kinase C (PKC)) and A-23187 (Ca(2+)-ionophore) attenuated the inhibitory effect of chlorpromazine on the GR-induced gene transcription. An antagonist of the L-type Ca(2+) channel, as well as an inhibitor of phospholipase C (PLC) inhibited the corticosterone-induced gene transcription, but had no effect on the chlorpromazine-induced changes. The involvement of a PKC/PLC pathway in the chlorpromazine action was confirmed by Western blot analysis which showed that the drug in question decreased the PLC-beta(1) protein level, and to a lesser extent that of the PKC-alpha protein in LMCAT cells. The aforementioned data suggest that inhibition of the glucocorticosteroid-induced gene transcription by chlorpromazine and clozapine may be a mechanism by which these drugs block some effects induced by glucocorticoids. The inhibitory effect of chlorpromazine on the corticosterone-induced gene transcription seems to depend on the inhibition of Ca(2+) influx and/or the inhibition of some calcium-dependent enzymes, e.g. phospholipase beta(1).
    [Abstract] [Full Text] [Related] [New Search]