These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sodium/calcium exchanger subtypes NCX1, NCX2 and NCX3 show cell-specific expression in rat hippocampus cultures.
    Author: Thurneysen T, Nicoll DA, Philipson KD, Porzig H.
    Journal: Brain Res Mol Brain Res; 2002 Nov 15; 107(2):145-56. PubMed ID: 12425943.
    Abstract:
    Na(+)/Ca(2+) exchange activity is known to be expressed throughout the brain in both glial and neuronal tissue. mRNA of all three major subtypes of the mammalian Na(+)/Ca(2+) exchanger protein (NCX1, NCX2, NCX3) has been detected in most brain areas, albeit at varying densities. [The term 'subtype' is used for exchangers that are products of different genes (NCX1, NCX2, NCX3); 'isoform' is used for splice variants of a single gene product]. However, for lack of subtype specific labels, the cellular expression pattern of this transport protein has remained largely unknown. We have now used three subtype-specific antibodies, two monoclonal and one polyclonal, to identify the cellular distribution of the exchanger subtypes in rat hippocampus cell cultures. Surprisingly, we found little overlap for the expression of this membrane protein in different cell types. NCX1 labeled mainly the membranes of neuronal cells and their associated dendritic network. It was found in nearly all neuronal cells of the population growing in culture. In cultures maintained for more than 3 weeks, NCX1 was increasingly detected in the membrane of glia cells. NCX2 immunoreactivity was predominantly localized in various types of glia cells. It was also detected in the membranes of a few neuronal cell bodies but never in the dendritic network. In addition to labeling membranes, the NCX2 antibody strongly cross-reacted with an unidentified glial fibrillar protein. NCX3 expression appeared very low in hippocampus cultures and was restricted to a small subpopulation of neuronal cells. It was never detected in glia cells. Our results provide novel information on the cell-specific expression of the three Na(+)/Ca(2+) exchanger subtypes (NCX1, NCX2 and NCX3) in mammalian brain. These data may reflect functional differences among the subtypes that are not obvious from studies in recombinant cell lines and hence, may help to understand the functional role of specific glia- or neuron-associated Ca(2+) transport systems.
    [Abstract] [Full Text] [Related] [New Search]