These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of traumatic brain injury and nitrone radical scavengers on relative changes in regional cerebral blood flow and glucose uptake in rats. Author: Marklund N, Sihver S, Långström B, Bergström M, Hillered L. Journal: J Neurotrauma; 2002 Oct; 19(10):1139-53. PubMed ID: 12427324. Abstract: Changes in regional cerebral blood flow (rCBF) and glucose metabolism are commonly associated with traumatic brain injury (TBI). Reactive oxygen species (ROS) have been implicated as key contributors to the secondary injury process after TBI. Here, pretreatment with the nitrone radical scavengers (alpha-phenyl-N-tert-butyl nitrone (PBN) or its sulfonated analogue sodium 2-sulfophenyl-N-tert-butyl nitrone (S-PBN) were used as tools to study the effects of ROS on rCBF and glucose metabolism after moderate (2.4-2.6 atm) lateral fluid percussion injury (FPI) in rats. S-PBN has a half-life in plasma of 9 min and does not penetrate the blood-brain barrier (BBB). In contrast, PBN has a half-life of 3 h and readily penetrates the BBB. Regional cerebral blood flow (rCBF) and glucose metabolism was estimated by using (99m)Tc-HMPAO and [(18)F]Fluoro-2-deoxyglucose (FDG) autoradiography, respectively, at 42 min (n = 37) and 12 h (n = 34) after the injury. Regions of interest were the parietal cortex and hippocampus bilaterally. As expected, FPI produced an early (42-min) hypoperfusion in ipsilateral cortex and an increase in glucose metabolism in both cortex and hippocampus, giving way to a state of hypoperfusion and decreased glucose metabolism at 12 h postinjury. On the contralateral side, a hypoperfusion in the cortex and hippocampus was seen at 12 h only, but no significant changes in glucose metabolism. Both S-PBN and PBN attenuated the trauma-induced changes in rCBF and glucose metabolism. Thus, the early improvement in rCBF and glucose metabolism correlates with and may partly mediate the improved functional and morphological outcome after TBI in nitrone-treated rats.[Abstract] [Full Text] [Related] [New Search]