These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PF 9601N [N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine], a new MAO-B inhibitor, attenuates MPTP-induced depletion of striatal dopamine levels in C57/BL6 mice.
    Author: Perez V, Unzeta M.
    Journal: Neurochem Int; 2003 Feb; 42(3):221-9. PubMed ID: 12427476.
    Abstract:
    Monoamine oxidase isoform B (MAO-B) is involved in Parkinson's disease (PD) induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin (MPTP) in human and non-human-primate. MAO-B inhibitors, such as L-deprenyl have shown to prevent against MPTP-toxicity in different species, and it has been used in Parkinson therapy, however, the fact that it is metabolized to (-)-methamphetamine and (-)-amphetamine highlights the need to find out new MAO-B inhibitors without a structural amphetaminic moiety. In this context we herein report, for the first time, anywhere a novel non-amphetamine-like MAO-B inhibitor, PF 9601N, N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine. This attenuates the MPTP-induced striatal dopamine depletion in young-adult and adult-old C57/BL mice, using different schedules of administration, and which behave "ex vivo" as a slightly more potent and selective MAO-B inhibitor than L-deprenyl, assayed for comparative purposes in the same experimental conditions. The MAO-B ID(50) values were calculated from the total MAO-B activity measured against [14C] phenylethylamine (22 microM) as substrate, at each inhibitor concentration. The MAO-B ID(50) values resulted to be 381 and 577 nmol/kg for PF 9601N and L-deprenyl, respectively. The intraperitoneally (i.p.) co-administration to young-adult C57/BL6 mice of MPTP (30 mg/kg), with different concentrations of PF 9601N or L-deprenyl (29.5-0.357 micromol/kg) showed a dose-dependent protective effect against striatal dopamine depletion, measuring the dopamine contents and its metabolites by HPLC. The ED(50) value proved to be 3.07 micromol/kg without any significant differences between either MAO-B inhibitor. Nevertheless, lower doses of PF 9601N (1.5 micromol/kg) were necessary to get almost total protection, without any change in the DOPAC and HVA content, when administered 2 h before MPTP (30 mg/kg), whereas partial protection (45%) against dopamine depletion was observed in the case of L-deprenyl. In both cases, MAO-B inhibition was a necessary condition in order to observe the protective effect. When adult-old (8-10 months) C57/BL6 mice were used, MPTP (25 mg/kg) administration induced 25 days later, an irreversible dopamine depletion. In these conditions, chronic administration with 0.15 micromol/kg of PF 9601N, before the toxin, every 24 h for 10 days, rendered almost total protection of dopamine depletion, whereas L-deprenyl yielded only 50% protection of the dopamine content, assayed in the same conditions. It is worth remarking, that in both cases MAO-B was not affected. From these results, it can be concluded that PF 9601N attenuates MPTP neurotoxicity "in vivo" better than L-deprenyl through different mechanisms, with special relevance to the protective effect, independent of MAO-B inhibition, observed in the irreversibly MPTP-lesioned adult-old mice. Therefore, this novel non-amphetamine MAO-B inhibitor could be potentially effective in PD therapy.
    [Abstract] [Full Text] [Related] [New Search]