These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The relationship of aplastic anemia and PNH.
    Author: Young NS, Maciejewski JP, Sloand E, Chen G, Zeng W, Risitano A, Miyazato A.
    Journal: Int J Hematol; 2002 Aug; 76 Suppl 2():168-72. PubMed ID: 12430920.
    Abstract:
    Bone marrow failure has been regarded as one of the triad of clinical manifestations of paroxysmal noctumal hemoglobinuria (PNH), and PNH in turn has been described as a late clonal disease evolving in patients recovering from aplastic anemia. Better understanding of the pathophysiology of both diseases and improved tests for cell surface glycosylphosphatidylinositol (GPI)-linked proteins has radically altered this view. Flow cytometry of granulocytes shows evidence of an expanded PNH clone in a large proportion of marrow failure patients at the time of presentation: in our large NIH series, about 1/3 of over 200 aplastic anemia cases and almost 20% of more than 100 myelodysplasia cases. Clonal PNH expansion (rather than bone marrow failure) is strongly linked to the histocompatability antigen HLA.-DR2 in all clinical varieties of the disease, suggesting an immune component to its pathophysiology. An extrinsic mechanism of clonal expansion is also more consistent with knock-out mouse models and culture experiments with primary cells and cell lines, which have failed to demonstrate an intrinsic proliferative advantage for PNH cells. DNA chip analysis of multiple paired normal and PIG-A mutant cell lines and lymphoblastoid cells do not show any consistent differences in levels of gene expression. In aplastic anemia/PNH there is surprisingly limited utilization of the V-beta chain of the T cell receptor, and patients' dominant T cell clones, which are functionally inhibitory of autologous hematopoiesis, use identical CDR3 regions for antigen binding. Phenotypically normal cells from PNH patients proliferate more poorly in culture than do the same patient's PNH cells, and the normal cells are damaged as a result of apoptosis and overexpress Fas. Differences in protein degradation might play a dual role in pathophysiology, as GPI-linked proteins lacking an anchor would be predicted to be processed by the proteasome machinery and displayed in a class I H.A. context, in contrast to the normal pathway of cell surface membrane recycling, lysosomal degradation, and presentation by class II HLA. The strong relationship between a chronic, organ-specific immune destructive process and the expansion of a single mutant stem cell clone remains frustratingly enigmatic but likely to be the result of interesting biologic processes, with mechanisms that potentially can be extended to the role of inflammation in producing premalignant syndromes.
    [Abstract] [Full Text] [Related] [New Search]