These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Plasma glucose-lowering effect of beta-endorphin in streptozotocin-induced diabetic rats.
    Author: Cheng JT, Liu IM, Tzeng TF, Tsai CC, Lai TY.
    Journal: Horm Metab Res; 2002 Oct; 34(10):570-6. PubMed ID: 12439785.
    Abstract:
    The effect of beta-endorphin on plasma glucose levels was investigated in streptozotocin-induced diabetic rats (STZ-diabetic rats). A dose-dependent lowering of plasma glucose was observed in the fasting STZ-diabetic rat fifteen minutes after intravenous injection of beta-endorphin. The plasma glucose-lowering effect of beta-endorphin was abolished by pretreatment with naloxone or naloxonazine at doses sufficient to block opioid mu-receptors. Also, unlike wild-type diabetic mice, beta-endorphin failed to induce its plasma glucose-lowering effect in the opioid mu-receptor knock-out diabetic mice. In isolated soleus muscle, beta-endorphin enhanced the uptake of radioactive glucose in a concentration-dependent manner. Stimulatory effects of beta-endorphin on glycogen synthesis were also seen in hepatocytes isolated from STZ-diabetic rats. The blockade of these actions by naloxone and naloxonazine indicated the mediation of opioid mu-receptors. In the presence of U73312, the specific inhibitor of phospholipase C (PLC), the uptake of radioactive glucose into isolated soleus muscle induced by beta-endorphin was reduced in a concentration-dependent manner, but it was not affected by U73343, the negative control of U73312. Moreover, chelerythrine and GF 109203X diminished the stimulatory action of beta-endorphin on the uptake of radioactive glucose at a concentration sufficient to inhibit protein kinase C (PKC). The data obtained suggest that activating opioid mu-receptors by beta-endorphin may increase glucose utilization in peripheral tissues via the PLC-PKC pathway to lower plasma glucose in diabetic rats lacking insulin.
    [Abstract] [Full Text] [Related] [New Search]