These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contribution of T-type VDCC to TEA-induced long-term synaptic modification in hippocampal CA1 and dentate gyrus.
    Author: Song D, Wang Z, Berger TW.
    Journal: Hippocampus; 2002; 12(5):689-97. PubMed ID: 12440583.
    Abstract:
    We have previously reported that exposure to the K+ channel blocker tetraethylammonium (TEA), 25 mM, induces long-term potentiation (LTP) in CA1, but not in the dentate gyrus (DG), of the rat hippocampal slice. During TEA application, stimulation of excitatory afferents results in a strong depolarizing potential after the fast excitatory postsynaptic potential (EPSP) in CA1, but not in DG. We hypothesized that the differential effect of TEA on long-term synaptic modification in CA1 and DG results from different levels of TEA-elicited depolarization in the two cell types. Additional pharmacological studies showed that blockade of T-type voltage-dependent calcium channels (VDCCs) decreased both the magnitude of LTP and the late, depolarizing potential in CA1. Blockade of L-type VDCCs had no such effect. Using computer models of morphologically reconstructed CA1 pyramidal cells and DG granule cells, we tested our hypothesis by simulating the relative intracellular Ca2+ accumulation and membrane potential changes mediated by T-type and L-type VDCCs. Simulation results using pyramidal cell models showed that, with decreased maximum conductance of TEA-sensitive potassium channels, synaptic inputs elicited strong depolarizing potentials similar to those observed with intracellular recording. During this depolarization, VDCCs were opened and resulted in a large intracellular Ca2+ accumulation that presumably caused LTP. When T-type VDCCs were blocked, the magnitudes of both the Ca2+ accumulation and the late depolarizing potential were decreased substantially. Simulated blockade of L-type VDCCs had only a minor effect. Together, our modeling and experimental studies indicate that T-type VDCCs, rather than L-type VDCCs, are primarily responsible for facilitating the depolarizing potential caused by TEA and for the consequent Ca2+ influx. Thus, our findings strongly suggest that the induction of TEA-LTP in CA1 depends primarily on T-type, rather than L-type, VDCCs. Simulation results using modeled granule cells suggests that the failure of TEA to induce LTP in DG is partly due to a low density of T-type VDCCs in granule cell membranes.
    [Abstract] [Full Text] [Related] [New Search]