These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of metabotropic glutamate receptor 8 in autonomic cell groups of the medulla oblongata of the rat.
    Author: Pamidimukkala J, Hoang CJ, Hay M.
    Journal: Brain Res; 2002 Dec 06; 957(1):162-73. PubMed ID: 12443992.
    Abstract:
    Metabotropic glutamate receptors (mGluRs) in the medulla oblongata have been suggested to have a functional role in the regulation of cardiovascular baroreflexes. The present study examines the localization of mGluR8 autonomic nuclei of the medulla of the rat. mGluR8 immunoreactivity was observed in the cell bodies and/or processes of the dorsolateral, interstitial, medial, intermediate, ventral, ventrolateral, subpostremal, commissural, parvicellular and gelatinosus subnuclei of the nucleus tractus solitarius (NTS). The intensity of mGluR8 staining was highest in the commissural and interstitial subnuclei at the level of the area postrema. Commissural NTS is involved in regulation of baro-, and chemo-reflexes whereas the interstitial nucleus mediates respiratory reflexes. In the area postrema, diffuse staining was observed in the cell bodies, dendrites and fibers of the dorsal and central regions. In vagal outflow nuclei, mGluR8 immunoreactivity was observed in: (1). the cell bodies and processes of the dorsal motor nucleus of the vagus (DMN) throughout the rostro-caudal extent; and (2). the cell bodies and fibers throughout the rostro-caudal extent of the dorsal and ventral division the nucleus ambiguus (NA). Staining in the ventrolateral medulla was restricted to regions ventral to the nucleus ambiguus and dorsal to the lateral reticulate nucleus. The present study is the first to provide a detailed mapping of mGluR8 within the autonomic nuclei of the medulla and suggests that this subtype may be involved in shaping synaptic transmission in these central nuclei.
    [Abstract] [Full Text] [Related] [New Search]