These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Folding and assembly of lambda Cro repressor dimers are kinetically limited by proline isomerization. Author: Satumba WJ, Mossing MC. Journal: Biochemistry; 2002 Dec 03; 41(48):14216-24. PubMed ID: 12450385. Abstract: Cro binds to operator sites in lambda DNA as a dimer. Dimerization of this small repressor protein is weak, however, and proline residues in the dimer interface suggest that folding and assembly of active repressors may be complex. Cro and selected variants have been studied by circular dichroism and fluorescence. Fluorescent probes include a unique tryptophan residue in the dimer interface and extrinsic resonance energy transfer probes that monitor dimerization. Both folding and unfolding are characterized by two distinct kinetic phases. Fast processes that are complete within the 5-10 ms dead time of stopped flow experiments account for the majority of the change in the CD signal and abrupt changes in both tryptophan fluorescence and energy transfer. The slow phases show all the hallmarks of proline isomerization. The rates of the slow phases are between 0.005 and 0.02 s(-1), are relatively independent of protein and denaturant concentration, display activation energies of 20 kcal/mol, and are accelerated by the peptidyl-prolyl isomerase SlyD. Although CD measurements indicate that more than 70% of the secondary structure is regained in the refolding burst phase, intermolecular fluorescence resonance energy transfer experiments indicate that less than 25% of these subunits are assembled into dimers. Full folding and dimerization requires isomerization of the non-native prolyl isomers over hundreds of seconds.[Abstract] [Full Text] [Related] [New Search]