These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two processes lead to a stable all-trans and 13-cis isomer equilibrium in dark-adapted bacteriorhodopsin; effect of high pressure on bacteriorhodopsin, bacteriorhodopsin mutant D96N and fluoro-bacteriorhodopsin analogues. Author: Bryl K, Yoshihara K. Journal: Eur Biophys J; 2002 Dec; 31(7):539-48. PubMed ID: 12451423. Abstract: The combination of absorption spectroscopy and extraction techniques was applied to study the effect of high pressure on the dark-adapted state of bacteriorhodopsin, 14-(12-,10-)fluoro-bacteriorhodopsin, a D96N bacteriorhodopsin mutant, and 14-(12-,10-)fluoro-D96N. Evidence is presented that, at high pressure, the isomers' equilibrium is shifted from all- trans isomers towards the 13-cis isomers. Two groups of values for calculated molar volume changes indicate that there are at least two different processes leading to a stable all-trans and 13-cis isomers' equilibrium called the dark-adapted bacteriorhodopsin. The first process may be attributed to changes in the distances and rearrangement of functionally important residues and a retinal Schiff base. It is suggested that the moved residues (probably Asp-212 with the contribution of Tyr-185 and/or Asp-85) closer to the chromophore could catalyse its trans-cis isomerization. These changes require smaller pressure changes and induce larger volume changes (large-volume-change process). The second process may be attributed to the formation of the three hydrogen bonds that additionally decrease the volume and strengthen further stabilization of the 13-cis isomer. To induce these changes, larger changes of pressure are required and the final molar volume changes are smaller (small-volume-change process). The total molar volume change between all-trans bacteriorhodopsin and 13-cis bacteriorhodopsin in the dark-adapted state of native bacteriorhodopsin was found to be about -28 mL/mol, which is much higher than the value of about -7 mL/mol obtained previously (Tsuda and Ebrey 1980, Schulte and Bradley 1995). The data provide a novel insight into factors leading to stable isomer equilibrium in dark-adapted bacteriorhodopsin.[Abstract] [Full Text] [Related] [New Search]