These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NF-kappaB--a potential therapeutic target for inhibition of human cytomegalovirus (re)activation?
    Author: Prösch S, Wuttke R, Krüger DH, Volk HD.
    Journal: Biol Chem; 2002 Oct; 383(10):1601-9. PubMed ID: 12452437.
    Abstract:
    From clinical studies the proinflammatory cytokine TNFalpha was proposed to play a key role in human cytomegalovirus (HCMV) reactivation from latency. In vitro experiments confirmed that TNFalpha stimulates the activity of the HCMV IE1/2 enhancer/promoter, which controls immediate early protein IE1 and IE2 gene expression via activation of the transcription factor NF-kappaB and its binding to putative binding sites in the IE1/2 enhancer. NF-kappaB was also proposed to be involved in IE1-mediated autostimulation of this promoter. The IE1/2 enhancer of HCMV contains four putative NF-kappaB binding sites which differ in their distance to the transcription start site as well as in their sequence. Construction and testing of a series of promoter mutants demonstrated that NF-kappaB is essential for both TNFalpha and IE1 stimulation. Furthermore, we were able to show that although all four NF-kappaB sites bind NF-kappaB with similar affinity in vitro, the contribution to TNFalpha and IE1 stimulation differs in correlation with the distance to the transcription start site and the sequence. Site 1 and 3 play the most dominant role and site 2 an intermediate, while site 4, which is conserved in sequence but far distant from the transcription start site, had no influence on NF-kappaB-mediated regulation of the IE1/2 promoter. Specific inhibition of NF-kappaB signalling by co-expression of a dominant-negative IkappaB variant reduced TNFalpha stimulation of the IE1/2 enhancer/promoter by up to 80%. From this data, inhibitors of NF-kappaB activation are suggested to be an alternative therapeutical strategy to interfere with HCMV (re)activation in undifferentiated monocyte/granulocyte progenitor cells in patients with a high risk of inflammation-related HCMV (re)activation.
    [Abstract] [Full Text] [Related] [New Search]