These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of the insulin-regulated interaction of phosphodiesterase 3B with 14-3-3 beta protein.
    Author: Onuma H, Osawa H, Yamada K, Ogura T, Tanabe F, Granner DK, Makino H.
    Journal: Diabetes; 2002 Dec; 51(12):3362-7. PubMed ID: 12453887.
    Abstract:
    Phosphodiesterase (PDE)-3B, a major PDE isoform in adipocytes, plays a pivotal role in the antilipolytic action of insulin. Insulin-induced phosphorylation and activation of PDE3B is phosphatidylinositol 3-kinase (PI3-K) and Akt dependent, but the precise mechanism of PDE3B activation is not fully understood. We have identified 14-3-3 beta, a critical scaffolding molecule in signal transduction, as a protein that interacts with PDE3B using the yeast two-hybrid system. The interaction between PDE3B and 14-3-3 beta was then confirmed in vitro. The glutathione S-transferase (GST)-tagged 14-3-3 beta interacts with endogenous PDE3B of rat adipocytes, and this interaction is enhanced when adipocytes are treated with insulin. Coimmunoprecipitation experiments reveal that endogenous PDE3B also associates with endogenous 14-3-3 beta in rat adipocytes, and this interaction is enhanced by insulin. Two different PI3-K inhibitors, wortmannin and Ly294002, block this induction, suggesting that PI3-K is required. Synthetic 15 amino acid peptides of rat PDE3B containing phosphorylated Ser-279 or -302 inhibit this interaction, indicating that the insulin-regulated phosphorylation of these serine residues is involved. Because insulin receptor substrate-1 also associates with 14-3-3, the dimeric 14-3-3 beta could function as a scaffolding protein in the activation of PDE3B by insulin.
    [Abstract] [Full Text] [Related] [New Search]