These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Early embryonic expression of ion channels and pumps in chick and Xenopus development. Author: Rutenberg J, Cheng SM, Levin M. Journal: Dev Dyn; 2002 Dec; 225(4):469-84. PubMed ID: 12454924. Abstract: An extensive body of literature implicates endogenous ion currents and standing voltage potential differences in the control of events during embryonic morphogenesis. Although the expression of ion channel and pump genes, which are responsible for ion flux, has been investigated in detail in nervous tissues, little data are available on the distribution and function of specific channels and pumps in early embryogenesis. To provide a necessary basis for the molecular understanding of the role of ion flux in development, we surveyed the expression of ion channel and pump mRNAs, as well as other genes that help to regulate membrane potential. Analysis in two species, chick and Xenopus, shows that several ion channel and pump mRNAs are present in specific and dynamic expression patterns in early embryos, well before the appearance of neurons. Examination of the distribution of maternal mRNAs reveals complex spatiotemporal subcellular localization patterns of transcripts in early blastomeres in Xenopus. Taken together, these data are consistent with an important role for ion flux in early embryonic morphogenesis; this survey characterizes candidate genes and provides information on likely embryonic contexts for their function, setting the stage for functional studies of the morphogenetic roles of ion transport.[Abstract] [Full Text] [Related] [New Search]