These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. Author: Nevins TA, Harder ZM, Korneluk RG, Holcík M. Journal: J Biol Chem; 2003 Feb 07; 278(6):3572-9. PubMed ID: 12458215. Abstract: Many cellular stresses lead to the inhibition of protein synthesis. Despite this, some cellular mRNAs are selectively translated under these conditions. It was suggested that the presence of internal ribosome entry site (IRES) sequences in the 5'-untranslated regions allow these mRNAs to be actively translated despite the overall cessation of protein synthesis. Here we tested the hypothesis that the IRES elements of genes that are involved in the control of cell survival are distinctly regulated by cellular stresses. We show that the transient conditions of cellular stress favor the translation of pro-survival IRES, while the severe apoptotic conditions support translation of pro-death IRES elements. Furthermore, activation of pro-death IRES during the etoposide-induced apoptosis is caspase-dependent and correlates with the expression of apoptotic fragments of two members of the eIF4G translation initiation factor family, p97/DAP5/NAT1 and eIF4GI. Our results suggest that the regulation of IRES translation during stress contributes to the fine-tuning of cell fate.[Abstract] [Full Text] [Related] [New Search]