These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The permeability of the endoplasmic reticulum is dynamically coupled to protein synthesis. Author: Roy A, Wonderlin WF. Journal: J Biol Chem; 2003 Feb 14; 278(7):4397-403. PubMed ID: 12458217. Abstract: Proteins synthesized by the rough endoplasmic reticulum (RER) co-translationally cross the membrane through the pore of a ribosome-bound translocon (RBT) complex. Although this pore is also permeable to small molecules, it is generally thought that barriers to their permeation prevent the cyclical process of protein translation from affecting the permeability of the RER. We tested this hypothesis by culturing Chinese hamster ovary-S cells with inhibitors of protein translation that affect the occupancy of RBTs by nascent proteins and then permeabilizing the plasma membrane and measuring the permeability of the RER to a small molecule, 4-methyl-umbelliferyl-alpha-d-glucopyranoside (4-MalphaG). The premature or normal release of nascent proteins by puromycin or pactamycin, respectively, increased the permeability of the RER to 4-MalphaG by 20-30%. In contrast, inhibition of elongation and the release of nascent proteins by cycloheximide did not increase the permeability, but it prevented the increase in permeability by pactamycin. We conclude that the permeability of the RER is coupled to protein translation by a simple gating mechanism whereby a nascent protein blocks the pore of a RBT during translation, but after release of the nascent protein the pore is permeable to small molecules as long as an empty ribosome remains bound to the translocon.[Abstract] [Full Text] [Related] [New Search]