These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bub2 is a cell cycle regulated phospho-protein controlled by multiple checkpoints. Author: Hu F, Elledge SJ. Journal: Cell Cycle; 2002; 1(5):351-5. PubMed ID: 12461298. Abstract: During mitotic exit, a small GTPase Tem1 needs to be activated. During most of the cell cycle, Tem1 activity is antagonized by a GTPase activating complex (GAP) composed of Bub2 and Bfa1. Bfa1 protein has cell cycle regulated phosphorylation depending upon the Polo-like kinase Cdc5. This phosphorylation dissociates Bfa1 from Tem1 and thus relieves the inhibition of Tem1 by the GAP complex. Bub2 and Bfa1 are also required to prevent mitotic exit when there is DNA damage, spindle damage or spindle misorientation at G(2)/M phase. While Cdc5 inhibits Bfa1/Bub2, mutating the Cdc5 phosphorylation sites on Bfa1 does not have a strong activating effect on Bub2/Bfa1, suggesting there must be additional regulation in this pathway. Here we report that Bub2 protein also has cell cycle regulated phosphorylation. This phosphorylation is partially dependent upon the Polo-like kinase Cdc5 and is consistent with negative regulation of the Bub2/Bfa1 GAP complex. Spindle damage or spindle misorientation prevents Bub2 phosphorylation. The spindle damage effect is dependent upon the spindle assembly checkpoint components Mad2 and Mps1. Thus like Bfa1, Bub2 protein is also controlled both during mitotic exit and in response to cell cycle checkpoints. Bub2 phosphorylation is likely to be controlled by a novel kinase.[Abstract] [Full Text] [Related] [New Search]